In: Jens Høyrup: *Algebra in Cuneiform: Introduction to an Old Babylonian Geometrical Technique*

Online version at http://mprl-series.mpg.de/textbooks/2/

First published 2017 by Edition Open Access, Max Planck Institute for the History of Science under Creative Commons by-nc-sa 3.0 Germany Licence.

http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Printed and distributed by:

PRO BUSINESS digital printing Deutschland GmbH, Berlin

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de
Bibliographical Note

The largest batch of Old Babylonian mathematical texts has been published (with German translation) in

and most of them also (with French translation) in

The above texts BM 13901, AO 8862, VAT 7532, YBC 6504, VAT 8512, VAT 8520, BM 85200+VAT 6599, BM 15285, VAT 8389, VAT 8390 and Str 368 are all contained in one as well as the other 1. Neugebauer’s edition contains a very substantial commentary, that of Thureau-Dangin (meant to be economically accessible) only a general introduction.

Other texts are found in

The text YBC 6967 comes from this work.

All texts from Susa (TMS) come from

The text Db2–146 comes from a journal publication,

1However, neither of the two volumes contains more than the principal fragment of BM 15285. A new edition based on the three fragments that are known today can be found in Eleanor Robson, *Mesopotamian Mathematics 2100–1600 BC. Technical Constants in Bureaucracy and Education.* Oxford: Clarendon Press, 1999.
Neugebauer’s and Thureau-Dangin’s editions are solid and dependable, as are their commentaries. However, when using Neugebauer’s *Mathematische Keilschrift-Texte* one should remember to consult the corrections that are given in volumes II and III—a pioneering work cannot avoid to formulate hypotheses and to propose interpretations that afterwards have to be corrected. Evidently the commentaries are based on the arithmetical interpretation of the algebraic texts, the originators of this interpretation being precisely Neugebauer and Thureau-Dangin.

The edition of the Susa texts is much less reliable. Too often, and in the worst sense of that word, the French translation and the mathematical commentary are fruits of the imagination. Even the translations of logograms into syllabic Akkadian are sometimes misleading—for instance, the logogram for “joining” is rendered by the Akkadian word for “heaping.” Everything needs to be controlled directly on the “hand copy” of the cuneiform text.²

The basis for most of what is new in the present book compared to the original editions—the geometric interpretation, the relation between the school and the practitioners’ tradition, the historical development—is set out in

This volume also contains editions of almost all the texts presented above with an interlinear English translation and with philological commentary and precise indication of all restitutions of damaged signs (the exceptions are TMS XVI #2, Str 368 and VAT 8520 #1). At least until further notice, large extracts can be found on Google Books.

²In other words, the edition is almost useless for non-specialists, even for historians of mathematics who do not understand the Old Babylonian tradition too well; several general histories of mathematics or algebra contain horrendous mistakes going back to Evert Bruins’s commentary.
Index

A

Abacus, 73, 128
see also Dust Abacus
Abū Kāmil, 106
Akkadian
principal language, 8
sentence structure, 24
see also Babylonian dialect
“Akkadian method”, 56, 62, 88
Al-Khwārizmī, 113
Algebra
and equations, 9
and quasi-algebra, 83, 89, 93
meaning of word, 9, 83, 97
Algebra, Arabic, 92, 112
and geometrical riddles, 113
origin, 113
Algebra, Babylonian
and Greek theoretical
arithmetic, 111
arithmetical interpretation, 13, 15
based on tangible and
measurable magnitudes, 28, 46, 98, 101
blind alley, 112, 113
cultural function, 103
didactical function, 102
discovery, 9
erroneous arguments, 80
flexible instrument, 63, 78
origin, 105
pretendedly practical
problems, 7, 66, 70, 101
principles of interpretation, 12, 16
problems with no practical
applications, 42, 66, 99, 101, 102
product of the Old Babylonian
epoch, 105
quasi-disappearance, 110
resurgence in reduced form, 110
school topic, 101
shortcomings of arithmetical
interpretation, 13, 15, 16, 41
variation of coefficients, 108, 111
see also Equation, Babylonian
Analysis, Greek, 98
Analytic method, 88, 89, 92, 98
Angle, Babylonian notion of, 28
practically right, 28, 95
AO 8862, 109, 149
#2, 18, 19, 22, 60, 74, 103, 122, 125

B

Babylonia, 8
Babylonian dialect, 8
Babylonian mathematics
editions of texts, 149
similar to and different from ours, 115

Bán, 17

“Base”, 55, 62, 108

Bisection of a trapezium, 86

known before 2200 BCE, 85

the argument, 86

BM 13901, 48, 62, 73, 108, 149

#1, 39, 47, 52

#2, 43, 47, 69

#10, 42, 48, 68, 79, 94, 122

#12, 73, 78, 102

#14, 49

#23, 75, 108, 109, 111, 127

#23, an archaizing fossil, 76, 108, 109

BM 15285

#24, 93, 136, 149

BM 85200+VAT 6599, 136, 149

#6, 89, 126

#23, 126

“Break”, 72

“Bring”, 63

Broad lines, 62

Broken reed, see Reed, broken m, 150

Bûr, 17, 33, 65, 66, 120

Bureaucracy, Ur III, 8

C

Calculation, techniques of, 120

Cardano, Gerolamo, 113

Change of scale in one direction, 52, 71, 86–88, 95, 108

City states, 8

Civilization, the first, 7

“Confront each other”, 23, 77

“Confrontation”, 22, 39, 43, 45

Cuneiform writing, 8, 10

change of direction, 11, 67

development, 10

Ideographic writing, 8

Logograms, 11

principles of transcription, 11

social use, 8, 11

syllabic, 11, 23

“Cut off”, 15

Cut-and-paste, 41, 51, 59, 89, 96, 109

D

Db$_2$–146, 126, 137, 149

Diagrams

drawn in sand, 97

drawn on the tablet, 66, 94

see also Structure diagrams

Dust Abacus, 96

E

Eighth degree, problem of, 102

Elements, see Euclid, Elements

“Encounter, make”, 69

“Equal by”, 23, 41, 106

“Equal, the”, 23, 46, 92

“Equal, 1 joined”, 92, 126

“Equals” that are not equal, 92

Equation, Babylonian, 29, 97

Equations, operation on, 98

Euclid, 89

and tradition of geometrical riddles, 112

Elements, 112, 113

Excavation, problems of, 93, 126

Explanations, pedagogical, 28, 33, 36, 54
Index

F
Factorization, 91, 93, 108
False position, 32, 48, 64, 67–69, 87, 90, 93
False value of a magnitude, 68, 119, 124
Fibonacci, Leonardo, 113
Field plans, 95
First degree, techniques for the, 27

G
Genres, mathematical, 93
Geometrica, 111
Geometry, mental, 96
Geometry, practical, Arabic, 111
“Go away, make”, 18, 66
“Go beyond”, 18, 129
“Go”, repetitive operation, 19, 58
Grammatical person in mathematical texts, 33, 62
GÚ, 17
GUR, 17, 120

H
Halves, 22, 62
“Hand“, a reckoning board, 128
“Head“ meaning beginning, 67
“Heap”, 12, 18, 28, 43, 48, 62, 99
History of Mesopotamia, 7
Hittites, 110
“Hold, make”, 19, 22, 49, 61, 64, 69, 122
producing a surface, 61, 121

I
1g1, 20, 23, 46, 48, 64, 77, 106
and “raising”, 20
igûm-igûm, 46, 123
Indeterminate equations, 35
Inscribe, 46
“Inside” of a magnitude, 15, 41, 43

J
“Join”, 15, 18, 41, 43, 47, 58, 59, 62, 72, 125
Journal des mathématique élémentaires, 103

K
kûš, 17, 19
standard height, 19

L
Ladies’ Diary, 103
Latinity, 103
“Lay down”, 46, 47, 94
“Length”, 16

M
Mathematical texts authors, 23
dating, 23
language, 23, 62
Mathematicians, Babylonian?, 102
Metrology
for area, 17
for hollow measures, 17
for horizontal distance, 17
for vertical distance, 17
for volumes, 17
for weight, 17
Mina, 17
“Modification”, 120
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Moiety”</td>
<td>[22, 62, 128]</td>
</tr>
<tr>
<td>Moral of history writing</td>
<td>[115]</td>
</tr>
<tr>
<td>Multiplicative operations</td>
<td>[19]</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Naive approach</td>
<td>[41, 81]</td>
</tr>
<tr>
<td>Negative numbers</td>
<td></td>
</tr>
<tr>
<td>absence from Babylonian mathematics</td>
<td>[42, 45, 115]</td>
</tr>
<tr>
<td>“found“ with the Babylonians</td>
<td>[43, 115]</td>
</tr>
<tr>
<td>Neo-Sumerian state</td>
<td>[8]</td>
</tr>
<tr>
<td>and place-value system</td>
<td>[8]</td>
</tr>
<tr>
<td>Neugebauer, Otto</td>
<td>[9, 13, 15, 16, 77, 149, 150]</td>
</tr>
<tr>
<td>NINDAN,</td>
<td>[17, 20]</td>
</tr>
<tr>
<td>Non-normalised equation</td>
<td></td>
</tr>
<tr>
<td>technique for</td>
<td>[51, 52, 87]</td>
</tr>
<tr>
<td>Numerical values</td>
<td></td>
</tr>
<tr>
<td>known but not given</td>
<td>[37, 90, 99]</td>
</tr>
<tr>
<td>used as names</td>
<td>[37]</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Old Babylonian epoch</td>
<td>[8]</td>
</tr>
<tr>
<td>Operations</td>
<td></td>
</tr>
<tr>
<td>additive</td>
<td>[18]</td>
</tr>
<tr>
<td>multiplicity of</td>
<td>[13]</td>
</tr>
<tr>
<td>of divisions</td>
<td>[20]</td>
</tr>
<tr>
<td>subtractive</td>
<td>[18]</td>
</tr>
<tr>
<td>Orientalism</td>
<td>[105]</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Pacioli, Luca</td>
<td>[111, 113]</td>
</tr>
<tr>
<td>PI</td>
<td>[17]</td>
</tr>
<tr>
<td>Place value number system</td>
<td>[8, 14]</td>
</tr>
<tr>
<td>“Posit to”</td>
<td>[21]</td>
</tr>
<tr>
<td>“Posit”</td>
<td>[21, 29]</td>
</tr>
<tr>
<td>Practitioners, mathematical</td>
<td>[106]</td>
</tr>
<tr>
<td>and mathematical riddles</td>
<td>[76, 106]</td>
</tr>
<tr>
<td>taught in apprenticeship</td>
<td>[106]</td>
</tr>
<tr>
<td>Pride, professional, of scribes</td>
<td>[103, 110]</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>about rectangles</td>
<td>[46, 73, 93, 102, 107, 108, 124, 125]</td>
</tr>
<tr>
<td>about squares</td>
<td>[39, 48, 73, 93, 107, 111]</td>
</tr>
<tr>
<td>constructed backwards</td>
<td>[45, 99]</td>
</tr>
<tr>
<td>Progress</td>
<td>[115, 116]</td>
</tr>
<tr>
<td>“Projection”</td>
<td>[15, 40, 43, 44, 62, 76, 108]</td>
</tr>
<tr>
<td>Proof, numerical</td>
<td>[120]</td>
</tr>
<tr>
<td>Proofs of problem solutions</td>
<td>[120]</td>
</tr>
<tr>
<td>Pure mathematics, Babylonian</td>
<td>[7]</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quadratic completion</td>
<td>[12, 42, 45, 46, 53, 56, 77, 80, 88, 107]</td>
</tr>
<tr>
<td>Quotation from the statement</td>
<td>[32, 111]</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>“Raise”</td>
<td>[12, 19, 20, 22, 29, 49, 79, 122]</td>
</tr>
<tr>
<td>Recreational problems</td>
<td>[107]</td>
</tr>
<tr>
<td>Rectangles</td>
<td></td>
</tr>
<tr>
<td>primacy compared to triangles</td>
<td>[28]</td>
</tr>
<tr>
<td>problems about, see Problems about rectangles</td>
<td></td>
</tr>
<tr>
<td>Reed, broken, problem of Reed</td>
<td>[65, 124]</td>
</tr>
<tr>
<td>Reed, metrological unit</td>
<td>[66]</td>
</tr>
<tr>
<td>Reference volume</td>
<td>[91, 92, 126]</td>
</tr>
<tr>
<td>Regular numbers</td>
<td>[21]</td>
</tr>
</tbody>
</table>
Remainder, notions of, 18
“Repeat” (“until \(n \)”), 122
Representation, 16, 72, 73, 99, 110, 111
fundamental, 46, 98
fundamental, Babylonian, 16
geometric, 16, 72
of areas by line segments, 75
Riddle format, 34, 76, 107, 108
Riddles, geometric, 107
adopted and transformed by the school, 108, 109
Riddles, geometric, tradition of, 106, 109
and modern mathematics, 113
Riddles, mathematical, 34, 76, 106
their functions, 107
Rodet, Léon, 43

S

sar, 17, 19, 120
“Scatter”, 99
School dimension of figures, 33, 109
Scribe school, 8, 20, 21, 24, 33, 56, 62, 101, 103, 105, 108, 110, 125, 127, 150
Scribes, 10, 95, 108
profession of, 8
their duties, 101
see also Pride, professional, of scribes
Second degree
complex problems, 57
fundamental techniques, 39
Second degree equations, practical application of, 5
“Separate”, 99
Sexagimal system, 11, 17, 21
Shekel, 17
sīla, 17, 120, 132
“Sixty”, 66
Square and square roots, 22
Square roots, approximated, 23, 92
Squares
concentric, 87
problems about, see Problems about squares
Standard units, 17
“Steps of”, 19, 22, 23
Str. 368, 123, 149
Structure diagrams, 95
Subtractive magnitudes, 42, 45
Sum, notions of, 18
Sumerian, 8
dead language, 8
learned language of scribes, 8, 23
support for professional pride, 103
“Surface”, 16, 17, 19, 39
Surveyors, 62, 63, 86, 109
Akkadian, 76, 106
riddle tradition of, 108, 111
Synonyms in mathematical terminology, 15, 16, 69, 99

T

Tables, 92
“equal, 1 joined“, 92
learned by heart, 20, 120
metrological, 120
of cubic “equals”, 92
of 161, 21, 23, 31, 46, 64, 111, 123
of multiplication, 20, 62, 120
of squares and ”equals“, 111
Tablets
- damaged, 25
- for rough work, 65, 77, 120
- support for writing, 10

"Tear out", 15, 18, 29, 41, 43, 45, 72, 90

Terminology, Babylonian
- mathematical, 9

Third degree, problems of, 90, 92
Thureau-Dangin, François, 9, 13

TMS IX, 139
- #1, 54, 62
- #2, 54
- #3, 19, 57, 62, 64, 74, 78, 123

TMS VII, 99, 138
- #1, 99, 118, 138
- #2, 19, 34, 42, 70

TMS VIII
- #1, 19, 49, 77, 139

TMS XIII, 87, 89, 141

TMS XVI, 51, 99
- #1, 27, 42, 54, 58, 88
- #2, 99, 117

Translation
- conformal, 24, 25, 113
- of numbers, 14, 25
- principles, 25

True value of a magnitude, 33

U

Units, 17
Ur, centre of neo-Sumerian state, 8
Ur III, 8, 23, 109
- see also Neo-Sumerian State

uš, unit, 93

V

Variables, 16
VAT 7532, 18, 65, 103, 124, 142, 149

VAT 8389, 149
- #1, 118, 142

VAT 8390, 149
- #1, 122

VAT 8512, 83, 145, 149
VAT 8520, 149
- #1, 122, 150

W

Width, 16, 76

Y

YBC 6504, 146, 149
- #1, 124
- #3, 125
- #4, 79

YBC 6967, 17, 45, 60, 71, 72, 123, 125, 128, 148, 149